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We report numerical simulations of strongly vibrated granular materials designed to mimic recent experi-
ments performed in both the presence and the absence of gravity. The coefficient of restitution used here
depends on the impact velocity by taking into account both the viscoelastic and plastic deformations of
particles, occurring at low and high velocities, respectively. We show that this model with impact-velocity-
dependent restitution coefficient reproduces results that agree with experiments. We measure the scaling ex-
ponents of the granular temperature, collision frequency, impulse, and pressure with the vibrating piston
velocity as the particle number increases. As the system changes from a homogeneous gas state at low density
to a clustered state at high density, these exponents are all found to decrease continuously with increasing
particle number. All these results differ significantly from classical inelastic hard sphere kinetic theory and
previous simulations, both based on a constant restitution coefficient.
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I. INTRODUCTION

The past decade has seen the publication of many experi-
mentalf1–3g, numericalf3–5g, and theoreticalf1,6–8g stud-
ies of strongly vibrated granular media. This problem is in-
teresting because vibrated granular media are simple but
nontrivial examples of nonequilibrium steady states and the
only way to experimentally realize granular gasesf9g. How-
ever, numerous questions remain about the link between ex-
periments on one hand, and theory and simulations on the
other. Most numerical and theoretical studies were not in-
tended to be compared with experiments. Therefore, they
have parameter values far from the experimental ones, and
none of them predict even the most basic features of the
experimental results.

In this paper, we bridge the gap between experiments and
numerics by presenting simulations of strongly vibrated
granular materials designed to mimic recent experiments per-
formed in both the presencef10g and the absencef11g of
gravity. We present simulations that resemble the experi-
ments for a large range of parameters. We show that two
parameters are especially important for the agreement be-
tween experiment and simulation. First of all, the coefficient
of restitution has to be dependent on the particle impact ve-
locity by taking into account both the viscoelastic and plastic
deformations of particles occurring at low and high veloci-
ties, respectively. Most previous numerical studies consider
only a constant restitution coefficientf3–5g; a few studies
with slight velocity dependencesdue to only the viscoelastic
contributiond f12g. Second, it is important to explicitly con-
sider the number of particlesN. Studying only one value of
N or comparing results obtained at differentN can lead to
interpretive difficulties.

Beyond these agreements between experiments and our
simulations, we find results that differ significantly from
classical inelastic hard sphere kinetic theory and previous
simulations. We measure the scaling exponents of the granu-
lar temperature, collision frequency, impulse, and pressure
with the vibrating piston velocity as the particle number in-
creases, in both the presence and absence of gravity. We
show that the system undergoes a smooth transition from a
homogeneous gas state at low density to a clustered state at
high density.

The paper has the following structure. In Sec. II, we
present a description of the simulationssnotably the model of
impact-velocity-dependent restitution coefficient, and the in-
fluence of other simulations parametersd. Section III provides
a comparison of simulations and experimentssshowing the
importance of the variable coefficient of restitution and the
particle numberd, and the results of the scaling exponents.
Section III C focus on the influence of other simulations pa-
rameterssbed height, box size, particle rotations, gravityd.
Finally, in Sec. IV we summarize our results.

II. DESCRIPTION OF THE SIMULATIONS

A. The variable coefficient of restitution

The greatest difference between our simulations and the
previous numerical studies of vibrated granular mediaf3–5g
is that we use a restitution coefficient that depends on impact
velocity. The restitution coefficientr is the ratio between the
relative normal velocities before and after impact. In previ-
ous simulations of strongly vibrated granular media, the co-
efficient of restitution is considered to be constant and lower
than 1. However, for a century, it has been shown from
impact experiments thatr is a function of the impact velocity
v f13–17g. Indeed, for metallic particles, whenv is large
sv*5 m/s f14gd, the colliding particles deform fully plasti-
cally and r ~v−1/4 f13–15g. Whenv&0.1 m/sf14g, the de-
formations are elastic with mainly viscoelastic dissipation,
ands1−rd~v1/5 f15–18g. Such velocity-dependent restitution
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coefficient models have recently been shown to be important
in numerical f12,19–23g and experimentalf17,24g studies.
Applications include granular fluidlike propertiessconvec-
tion f19g, surface wavesf20gd, collective collisional pro-
cesses senergy transmissionf21g, absence of collapse
f17,22gd, and planetary ringsf23,24g. But surprisingly, this
model has not apparently yet been tested numerically for
strongly vibrated granular media.

In this paper, we use a velocity-dependent restitution co-
efficient rsvd and join the two regimes of dissipationsvis-
coelastic and plasticd together as simply as possible, assum-
ing that

rsvd =51 − s1 − r0dS v
v0
D1/5

, v ø v0,

r0S v
v0
D−1/4

, v ù v0,6 s1d

wherev0=0.3 m/s is chosen, throughout the paper, to be the
yielding velocity for stainless steel particlesf14,25g for
which r0 is close to 0.95f25g. Note thatv0,1/Îr wherer is
the density of the spheref14g. We display in Fig. 1 the
velocity-dependent restitution coefficient of Eq.s1d, with r0
=0.95 andv0=0.3 m/s, which agrees well with experimental
results on steel spheres from Ref.f25g. As also already noted
by Ref. f14g, the impact velocity to cause yield in metal
surfaces is indeed relatively small. For metal, it mainly
comes from the low yield stress valuesY,109 N/m2d with
respect to the elastic Young modulussE,1011 N/m2d. Most
impacts between metallic bodies thus involve some plastic
deformation.

B. The other simulation parameters

The numerical simulation consists of an ensemble of iden-
tical hard disks of massm<3310−5 kg excited vertically by
a piston in a two-dimensional box. Simulations are done both
in the presencesg=9.8m/s2d and absencesg=0d of uniform
gravity g. Collisions are assumed instantaneous and thus

only binary collisions occur. For simplicity, we neglect the
rotational degree of freedom. Collisions with the wall are
treated in the same way as collisions between particles, ex-
cept the wall has infinite mass.

Motivated by recent three-dimensionals3Dd experiments
on stainless steel spheres, 2 mm in diameter, fluidized by a
vibrating pistonf10g, we choose the simulation parameters to
match the experimental ones: in the simulations, the vibrated
piston at the bottom of the box has amplitudeA=25 mm
sdistance between the highest and lowest positions of the
pistond and frequencies 5ø f ø50 Hz. The piston is nearly
sinusoidally vibrated with a wave form made by joining two
parabolas together. The vertical displacement of the piston
zstd during time t then is zstd=sA/2dst2− t0

2d for −t0ø tø t0
andzstd=−sA/2dst2− t0

2d for t0ø tø3t0 with to=1/s4fd. This
leads to a maximum piston velocity given byV=4Af. The
particles are disksd=2 mm in diameter with stainless steel
collision properties throughv0 and r0 ssee Fig. 1d. The box
has widthL=20 cm and horizontal periodic boundary condi-
tions. Since our simulations are two dimensional, we con-
sider the simulation geometrically equivalent to the experi-
ment when their numbers of layers of particles,n=Nd/L, are
equal. Hence in the simulation, a layer of particlesn=1 cor-
responds to 100 particles. We checked thatn is an appropri-
ate way to measure the number of particles by also running
simulations atL=10 and 40 cm. None of this paper’s results
depend significantly onL. As in the experiments, the heighth
of the box depends on the number of particles in order to
have a constant differenceh−h0=15 mm, whereh0 is the
height of the bed of particles at rest. Heights are defined from
the piston at its highest position. The influence ofh−h0 on
the results is discussed in Sec. III C.

III. COMPARISON OF SIMULATION AND EXPERIMENT:
SCALING PROPERTIES

A. The importance of the variable coefficient of restitution

We examine first the dependence of the pressure on the
number of particle layers for maximum velocity of the piston
1&V&5 m/s sV=4Afd. The time averaged pressure at the
upper wall is displayed in Fig. 2 as a function ofn for vari-
ous f: from the experiments of Falconet al. f10g fsee Fig.
2sadg, from our simulations with velocity-dependent restitu-
tion coefficientr =rsvd proposed in Eq.s1d fsee Fig. 2sbdg,
with constant restitution coefficientr =0.95, often used to
describe steel particlesfsee Fig. 2scdg, and finally with an
unrealistic constant restitution coefficientr =0.7 fsee Fig.
2sddg. Simulations with r =rsvd give results in agreement
with the experiments: At constant external driving, the pres-
sure in both Figs. 2sad and 2sbd passes through a maximum
for a critical value ofn roughly corresponding to one particle
layer. Forn,1, most particles are in vertical ballistic motion
between the piston and the lid. Thus, the mean pressure in-
creases roughly proportionally ton. When n is increased
such thatn.1, interparticle collisions become more fre-
quent. The energy dissipation is increased and thus the pres-
sure decreases. This maximum pressure is not due to gravity
because it also appears in simulations withg=0 and r

FIG. 1. The restitution coefficientr as a function of impact
velocity v, as given in Eq.s1d ssolid lined. The dashed lines show
v0=0.3 m/s andr0=0.95. Experimental pointssPd for steel spheres
were extracted from Fig. 1 of Ref.f25g.
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=rsvd. Furthermore, the maximum persists wheng is in-
creased above 9.8 m/s2. For nù4 and for certain frequen-
cies, a resonance appears in Fig. 2sbd which is controlled by
the ratio between the vibration period and the particle flight
time under gravity,Îg/h/ f. Turning our attention to Fig.
2scd, we see that settingr =0.95 independently of impact
velocity gives pressure qualitatively different from experi-
ments. The difference between Figs. 2sbd and 2scd can be
understood by considering a high velocity collisionse.g.,v
=1 m/sd. In Fig. 2sbd, this collision has a restitution coeffi-
cient of r =rs1 m/sd<0.7 ssee Fig. 1d, whereas in Fig. 2scd,
r is fixed at 0.95 for all collisions. This means that for equal
collision frequencies, dissipation is much stronger forr
=rsvd than for r =0.95, because the high velocity collisions
dominate the dissipation. Stronger dissipation leads to lower
granular temperatures and thus to lower pressures.

We can check this interpretation by changing the constant
restitution coefficient tor =0.7 and then comparing it tor
=rsvd. In these two cases, the high velocity collisions will
have roughly the same restitution coefficient. We indeed ob-
served a pressure that decreases for largen for constantr
=0.7 fsee Fig. 2sddg. Therefore, surprisingly, constantr =0.7
reproduces more precisely the experimental pressure mea-

surements than constantr =0.95, even thoughr =0.95 or 0.9
is often given as the restitution coefficient of steel. However,
if we look at other properties, we see thatr =0.7 and r
=rsvd give very different predictions.

For example, in Fig. 3, we show two snapshots from two
different simulations one withr =rsvd and another withr
=0.7, both withn=3 in the presence of gravity. Whenr
=rsvd, the particles are concentrated in the upper half of the
chamber, but they are evenly spread in the horizontal direc-
tion fsee Fig. 3sadg. The system is hotter and less dense near
the vibrating wall, and colder and denser by the opposite
wall. But, whenr =0.7, the majority of the particles are con-
fined to a tight cluster, pressed against the upper wall, coex-
isting with low density regionsfsee Fig. 3sbdg. This instabil-
ity has already been reported numericallyf26g, although for
much different parameterssconstant restitution coefficientr
=0.96, thermal walls, no gravity, and largend. However,
nothing like this was seen experimentally. Therefore, if one
is seeking information about particle positions,r =0.7 gives
incorrect results even though it gives acceptable results for
the pressure. We conclude, therefore, that the only way to
successfully describe all the properties in all situations is to
use a velocity-dependent restitution coefficient model.

FIG. 2. Time averaged pressureP on the top of the cell as a function of particle layern for various vibration frequenciesf. sad
Experimental results fromf10g for stainless steel beads 2 mm in diameter, withA=25 mm, 10ø f ø20 Hz with a 1 Hz stepsfrom bottom to
topd andh−h0=5 mm.sbd Numerical simulation where the coefficient of restitutionrsvd is given by Eq.s1d. scd Numerical simulation with
a coefficient of restitution of 0.95, independent of impact velocity.sdd Numerical simulation with a coefficient of restitution of 0.7,
independent of impact velocity. The simulationssbd, scd, and sdd are 2D with gravity, done for 2 mm disks, withA=25 mm, 10ø f
ø30 Hz with a 2 Hz stepsfrom bottom to topd andh−h0=15 mm. In the simulations, the two-dimensional pressure is given in N/m.
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B. The importance of the particle number

Many authors have postulated that the pressure on the
upper wall P sor granular temperatureTd is related to the
piston velocityV throughP,T~Vu. However, it is not clear
what the correct “scaling exponent”u should be. This ques-
tion has been addressed several times in the past, without a
clear resolution of the questionf5–8g. For example, kinetic
theory f1,7g and hydrodynamic modelsf8g predict T~V2

whereas numerical simulationsf3,4g or experimentsf1–3g
give T~Vu, with 1øuø2. These studies were done at single
values ofn. In this section, we show that it is very important
to explicitly consider the dependence of the scaling expo-
nents onn. We also consider the effect of gravity and a
variable coefficient of restitution. Doing so enables us to
explain and unify all previous works.

At the upper wall, we measured numerically the collision
frequencyNc and the mean impulsion per collisionDI for
various frequencies of the vibrating wall and numbers of
particles in the box, withr =rsvd or with r =0.95, in the pres-
ence or absence of gravity. The time averaged pressure on
the upper wall can be calculated from these quantities using

P = NcDI/L. s2d

sBy conservation of momentum, the time averaged pressure
on the lower wall is justP plus the weight of the particles
Nmg/L.d The total kinetic energy of the system is also mea-
sured to have access to the granular temperature,T. Nc, DI,
P, andT are all found to fit with power laws inVu for our
range of piston velocities. Figure 4 showsu exponents ofNc,
DI, P, andT as a function ofn. Wheng=0 andr is constant
fsee Fig. 4sadg, we haveP,V2, DI ,V, andNc,V for all n.
We call these relations the classical kinetic theory scaling.
This scaling can be established by simple dimensional analy-
sis when the vibration velocityV provides the only time
scale in the system. This is the case forg=0 andr indepen-
dent of velocity. However, in the experiments, two additional
time scales are provided, one by gravity and the other by the

velocity-dependent restitution coefficient. Numerical simula-
tions can separate the effects of these two time scales on the
scaling exponentsu. This is done in Fig. 4sbd fwhereg=0
but r =rsvdg and Fig. 4scd fwherer is constant butgÞ0g. In
both figures, all the exponents become functions ofn. How-
ever, the time scale linked tor =rsvd leads to much more
dramatic departure from the classical scaling. After consid-
ering the two time scales separately, let us consider the case
corresponding to most experiments, where both gravity and
r =rsvd are presentfsee Fig. 4sddg. The similarity between
this figure and Fig. 4sbd confirms that the velocity-dependent
restitution coefficient has a more important effect than the
gravity. Furthermore, only the variation of the restitution co-
efficient with the particle velocity explains the experiment
performed in low gravityf11g. This experiment gives aV3/2

pressure scalingfP symbol on Fig. 4sbdg for n=1 and a
motionless clustered state forn.2. Only the simulation with
r =rsvd can reproduce these resultsfsee Fig. 4sbdg whereas
constantr simulations leads to the classical scalingfP~V2,
see Fig. 4sadg and only a gaseous state for alln shown in the
figure.

As shown in Fig. 4, it is thus very important to explicitly
consider the dependence ofu on n. In all cases, except the
unrealistic case of Fig. 4sad, u depends onn. To our knowl-
edge, the only experimentf10g to systematically investigate
this effect shows thatT~Vusnd, with u continuously varying
from u=2 whenn→0, as expected from kinetic theory, to
u.0 for largen due to the clustering instability. These ex-
perimentsf10g performed under gravitysshown in Fig. 5d are
well reproduced by the simulations of Fig. 4sdd. In both
cases, the observed pressure and granular temperature scal-
ing exponents strongly decrease with increasingn.

We finish this section by noting two curious facts about
Fig. 4. First of all, in Fig. 4sbd fg=0 andr =rsvdg, u<1 for
the pressure and temperature whenn.2. This is the sign of
a different robust scaling regime whereP andT~V1, which
will be the topic of a future paper. Second, in Fig. 4sdd fg
Þ0 and r =rsvdg, the scaling exponents are not shown for
nù3, because the dependence ofP, T, Nc, andDI on V is no
longer a simple power law.sMore precisely, we do not plot a
point on Fig. 4 whenuln sXobservedd−ln sXfittedduù0.25 for any
of the 11 simulations used to calculate the exponent—see
caption.d The power law breaks down because there is a
resonance between the time of flight of the cluster under
gravity and the vibration period.

C. The influence of other parameters

In this section, we review the influence of the other simu-
lation parameterssbox size, particle rotations, gravity, and
the vibration parametersd, and show that it is not possible to
reproduce the experimental curves in Fig. 2sad unless one
setsr =rsvd or r =0.7.

Performing simulations for 5øh−h0ø50 mm shows that
the shapes of the curvesP vs n in Figs. 2sbd and 2scd remain
the same. Forr =rsvd fFig. 2sbdg increasingh−h0 shifts the
maximum toward smaller values ofn and decreases in am-
plitude. The only exception occurs when the box height ap-
proaches the particle diameter, i.e.,h−h0=5 mm, where the

FIG. 3. Snapshots from the simulations withn=3, gravity g
Þ0, driving frequencyf =30 Hz, andh−h0=15 mm. The upper
wall is stationary, and the lower wall is the piston, which is at its
lowest position in both snapshots. The horizontal boundaries are
periodic sindicated by dashed linesd. Gravity points downward.sad
r =rsvd, as given in Eq.s1d, andsbd constantr =0.7. In sbd we see a
tight cluster which was not observed in the experiments.
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maximum disappears. Consideringr =0.95 leads to similar
conclusions.

To eliminate the possibility that the experimental curve
can be reproduced by taking into account particle rotations,
we performed simulations withr =0.95 and various values of
the tangential restitution coefficientrt. This parameter is de-
fined as the ratio between the tangential components of the
pre- and postcollision relative velocities. Perfectly smooth
spheres correspond tort=−1. Whenrt=1, the tangential rela-
tive velocity is reversed by the collision. These two values
urtu=1 correspond to energy conservation. Energy is dissi-
pated for −1, rt,1, rt=0 corresponding to maximum en-
ergy dissipation. Whenurtu is close to 1, theP vs n curves are
almost unchanged. Whenrt is close to 0, the curves become
nearly flat forn.2.

Throughout this paper, we have used the piston vibration
velocity V to characterize the vibration. It is important to
point out thatV is not the only way to do this. One could also
use the maximum piston accelerationG. WhenG is close to
g, it controls the behavior of the system, i.e., adjustingA and
f while keepingG constant does not change the system’s

FIG. 4. The exponentsu as a function ofn which give the scaling of the granular temperatureT sLd, collision frequencyNc spd, mean
impulsionDI snd, and pressureP ssd. All these quantities are proportional toVusnd. Without gravity,sad for r =0.95 andsbd for r =rsvd. With
gravity, scd for r =0.95 andsdd for r =rsvd. The exponents are obtained by fixingn and performing 11 simulations, varyingf from
10 to 30 Hz. Then lnsXd swhereX is the quantity being consideredd is plotted against lnsVd. The resulting curve is always nearly a straight
line fexcept forn.3 in sdd—see textg, and the exponent is calculated from a least squares fit. The pressure scaling pointsPd on sbd is from
the experimentf11g performed in low gravity. See Fig. 3sad for typical snapshot corresponding ton=3, gÞ0 andr =rsvd.

FIG. 5. Experimental data performed under gravity from Ref.
f10g: The exponentsusnd of time averaged pressureshd fsee Fig.
2sadg, and kinetic energy extracted from density profilessd or vol-
ume expansionsLd measurements. These data should be compared
with the simulations of Fig. 4sdd.
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behavior much. But in the simulations presented here,G
@g, and the system’s behavior is controlled byV. This can
be checked by multiplying the frequency by 10 while divid-
ing A by 10, thus keepingV the sameswhile G increases by
an order of magnituded. Doing so changes the pressure only
by about 20%. Therefore,V is the correct parameter to de-
scribe the vibration for the simulations considered here.

IV. CONCLUSIONS

In this paper, we brought simulations of a strongly vi-
brated granular medium as close as possible to the experi-
ments. We showed that the use of a velocity-dependent co-
efficient of restitution reproduces results that agree with
experiments. It is especially important to take into account
plastic deformations that cause the restitution coefficient to
decrease rapidly with increasing impact velocity. Indeed, the
restitution coefficient for strongly vibrated steel spheres is

very far from the constant values ofr =0.95 or 0.9 that are
often cited in simulations as typical for steel spheres. Chang-
ing the box size or the gravitational acceleration and includ-
ing particle rotation do not modify this conclusion. We also
noted that it is very important to take into account the num-
ber of particle layersn. The dependence of the pressureP on
the piston velocityV changes withn. It is not accurate to
speak of “a” scaling exponent for the pressure in terms ofV:
this exponent depends continuously onn, and does not exist
at high densitysn.3d under gravity, due to the clustering
instability.
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